歡迎來到http://www.nvlbio.live !
當前位置:六六工程資料網建筑課堂工程資料建筑電氣電力線數傳通信設備的設計

電力線數傳通信設備的設計

09-03 12:42:58  瀏覽次數:517次  欄目:建筑電氣
標簽:建筑電氣工程技術,建筑電氣與智能化, 電力線數傳通信設備的設計,http://www.nvlbio.live

  引 言

  隨著社會的進步和技術的發展,多媒體業務不斷增長,人們對網絡帶寬的要求也隨之增長。

  通信網正向著IP化、寬帶化方向發展。通信網由傳輸網、交換網和接入網三部分組成。目前,我國傳輸網已經基本實現數字化和光纖化;交換網也實現了程控化和數字化;而接入網仍然是通過雙絞線與局端相連,只能達到56 kb/s的傳輸速率,不能滿足人們對多媒體信息的迫切需求。對接入網進行大規模改造,以升級到FTTC(光纖到路邊)甚至FTTH(光纖到戶),需要高昂的成本,短期內難以實現。XDSL技術實現了電話線上數據的高速傳輸,但是大多數家庭電話線路不多,限制了可連接上網的電腦數,而且在各房間鋪設傳輸電纜極為不便。最為經濟有效而且方便的基礎設備就是電源線,把電源線作為傳輸介質,在家庭內部不必進行新的線路施工,成本低。電力線作為通信信道,幾乎不需要維護或維護量極小,而且可以靈活地實現即插即用。此外,由于不必交電話費,月租費便宜。

  電力線高速數據傳輸使電力線做為通信媒介已成為可能。鋪設有電力線的地方,通過電力線路傳輸各種互聯網的數據,就可以實現數據通信,連成局域網或接入互聯網。通過電源線路傳輸各種互聯網數據,可以大大推進互聯網的普及。此項技術還可以使家用電腦及電器結合為可以互相溝通的網絡,形成新型的智能化家電網,用戶在任何地方通過Internet實現家用電器的監控和管理;可以直接實現電力抄表及電網自動化中遙信、遙測、遙控、遙調的各項功能,而不必另外鋪設通信信道。因此,研究電力線通信是十分必要的。

  1、OFDM基本原理

  正交頻分復用OFDM(Orthogonal Frequency Division Multiplexing)是一種正交多載波調制MCM方式。在傳統的數字通信系統中,符號序列調制在一個載波上進行串行傳輸,每個符號的頻率可以占有信道的全部可用帶寬。OFDM是一種并行數據傳輸系統,采用頻率上等間隔的N個子載波構成。它們分別調制一路獨立的數據信息,調制之后N個子載波的信號相加同時發送。因此,每個符號的頻譜只占用信道全部帶寬的一部分。在OFDM系統中,通過選擇載波間隔,使這些子載波在整個符號周期上保持頻譜的正交特性,各子載波上的信號在頻譜上互相重疊,而接收端利用載波之間的正交特性,可以無失真地恢復發送信息,從而提高系統的頻譜利用率。

  2、電力線數傳設備硬件構成

  電力線數據傳輸設備的硬件框圖。

  2. 1 數字信號處理單元TMS320VC5402

  用數字信號處理的手段實現MODEM需要極高的運算能力和極高的運算速度,在高速DSP出現之前,數字信號處理只能采用普通的微處理器。由于速度的限制,所實現的MODEM最高速度一般在2400b/s.自20世紀70年代末,Intel公司推出第一代DSP芯片Intel 2920以來,近20年來涌現出一大批高速DSP芯片,從而使話帶高速DSP MCODEM的實現成為可能。

  TMS320系列性價比高,國內現有開發手段齊全,自TI公司20世紀80年代初第一代產品TMS32010問世以來,正以每2年更新一代的速度,相繼推出TMS32020、TMS320C25、TMS320C30、TMS320C40以及第五代產品TMS320C54X.

  根據OFDM調制解調器實現所需要的信號處理能力,本文選擇以TMS320VC5402作為數據泵完成FFT等各種算法,充分利用其軟件、硬件資源,實現具有高性價比的OFDM高速電力線數傳設備。

  TMS320C54X是TI公司針對通信應用推出的中高檔16位定點DSP系列器件。該系列器件功能強大、靈活,較之前幾代DSP,具有以下突出優點:

  ◇速度更快(40~100 MIPS);

  ◇指令集更為豐富;

  ◇更多的尋址方式選擇;

  ◇2個40位的累加器;

  ◇硬件堆棧指針;

  ◇支持塊重復和環型緩沖區管理。

  2. 2高頻信號處理單元

  主要實現對高頻信號的放大、高頻開關和線路濾波等功能,并最終經小型加工結合設備送往配電線路。信號的放大包括發送方向的可控增益放大(前向功率控制),接收方向AGC的低噪聲放大部分。其中高頻開關完成收發高頻信號的轉換,實現雙工通信。同時使收發共用一個線路濾波器,這樣可以節省系統成本。

  2.3 RS一232接口單元

  用戶數據接口采用RS一232標準串行口。串口的數據中斷采用邊沿觸發中斷,串口中斷程序完成用戶數據的發送與接收。將接收到的用戶數據暫存到CPU的發送緩沖區中,等到滿一個突發包時就發送到DSP進行處理。

  3、參數設計

  3.1保護時間的選擇

  根據OFDM信號設計準則,首先選擇適當的保護時間,△=20μs,這能夠充分滿足在電力系統環境下,OFDM信號消除多徑時延擴展的目的。

  3.2符號周期的選擇

  T>200 μs,相應子信道間隔,f<5kHz,這樣在25kHz帶寬內至少要劃分出5個子信道。另外子信道數不能太多,增加子信道數雖然可以提高頻譜傳輸效率,但是DSP器件的復雜度也將增加,成本上升,同時還將受到信道時間選擇性衰落的嚴重影響。因此,考慮在25kHz的帶寬內采用7個子信道。

  3. 3子信道數的計算

  子信道間隔:

  各子信道的符號周期:T=250μs

  考慮保護時間:△=20μs,則有Ts=T+△=270μs各子信道實際的符號率:總的比特率:3.71kbps×25子信道×2b/symbol=185.5kb/s系統的頻譜效率:β=185.5kbps/100kHz=1.855bps/Hz<2bps/Hz

  可以看出,這時系統已經具有較高的頻譜效率。25路話音信號總的速率與經串并變換和4PSK映射后的各子信道上有用信息的符號率相比,每個子信道還可以插入冗余信息用于同步、載波參數、幀保護和用戶信息等。需要指出的是:

 、儆捎贠FDM信號時頻正交性的限制條件,在此設計中盡管采用了25個子載波并行傳輸也只能傳25路語音。如果要傳8路語音,經串并轉換和16QAM映射后,各個子信道上有用信息的符號率為1.855bps/Hz,最多還可以插入的冗余信息為0.145bps/Hz,在實際傳輸中這是很難保證的傳輸質量的,因此該設計相對于M-16QAM采用4個子載波傳輸6路話音并不矛盾。

 、谠诖嗽O計中,為冗余信息預留了較多的位,其冗余信息與有用信息的比值為0.59,大于iDEN系統的0.44.這是考慮到OFDM信號對于載波相位偏差和定時偏差都較為敏感,這樣就可以插入較多的參考信號以快速實現載波相位的鎖定、跟蹤及位同步;另一方面對引導符號間隔的選擇也較為靈活,在設計中選擇引導符號間隔L=10.

 、跲FDM信號調制解調的核心是DFT/IDFT算法。目前,普遍采用DSP芯片完成DFT/IDFT,因此有必要對設計所需的DSP性能進行估計。根據設計要求,至少要能在250μs內完成32個復數點的FFT運算。我們知道,N個復數點的FFT共需要2Nlog2 N次實數乘法和3Nl0g2 N次實數加法。假設實數乘法和實數加法都是單周期指令,以32個復數點為例,這樣共需要800個指令周期,即20μs,因此采用TMS320VC5402能夠滿足設計要求(TMS320VC5402的單指令周期為10ns)。

  4、軟件構成

  上面確定了OFDM數傳設備的主要參數及算法,下面說明用TMS320VC5402實現的軟件設計及流程。

  4. 1 調制部分的軟件設計

  此程序作為子程序被調用之前,要發送的數據已經被裝入數據存儲器,并將數據區的首地址及長度作為入口參數傳遞給子程序。程序執行時,首先清發送存儲器,然后配置AD9708的采樣速率,之后允許串行口發送中斷產生,使中斷服務程序自動依次讀取發送存儲器中的內容,送入AD9708變換成模擬信號。之后程序從數據存儲器讀取一幀數據,經編碼,并行放入IFFT工作區的相應位置,插入導頻符號并將不用的點補零。隨后進行IFFT,IFFT算法采用常用的時域抽點算法DIT,蝶形運算所需的WN可查N=512字的定點三角函數表得到。由于TMS320VC5402的數值計算為16位字長定點運算方式,所以IFFT采用成組定點法,既提高了運算精度又保證了運算速度。然后對IFFT變換后的結果擴展加窗,并將本幀信號的前擴展部分同上幀信號的后擴展部分相加,加窗所需窗函數可查表得到。窗函數存放在窗函數表中,是事先利用C語言浮點運算并將結果轉換為定點數存放在表中的。

  經實測,從讀取串行數據到加窗工作完成最多占用75個抽樣周期(75×125μs)的時間,而發送一幀信號需512+32=544個抽樣周期(544×125μs)。這說明C5402的運算速度足夠滿足需要。

  當上一幀信號發送完畢,程序立即將以處理好的本幀信號送入發送存儲器繼續發送,并通過入口參數判斷數據是否發送完畢。

[1] [2]  下一頁

,電力線數傳通信設備的設計

++《電力線數傳通信設備的設計》相關文章

贵州快3下载